Creativity Awards Class of 2010

> Our Work > The Work We Fund

Creativity Award

FGFR Inhibition to Develop Effective Combination Therapies

Nora Navone, MD, PhD
The University of Texas MD Anderson Cancer Center

Fibroblast growth factor (FGF) and its receptor (FGFR) form a protein-protein complex that has been implicated in prostate tumor cells as a pathway that drives prostate cancer progression and metastasis. FGF signaling causes blood vessel growth within the tumor through a process called angiogenesis. This process provides the growing tumor with nourishing blood and drives tumor cell growth. Dr. Navone and colleagues have initiated a first-in-man clinical study to assess the effectiveness of a novel agent called TKI258, an inhibitor of FGF signaling. The study includes a comprehensive molecular profiling of patient tissue obtained from metastatic sites. Results will inform how prostate cancer cells respond to TKI258 at the molecular level. These findings will advance our understanding of tumor progression and metastasis and may credential TKI258 as a new therapy for advanced prostate cancer.